Effects of 8 weeks of moderate-intensity resistance training on muscle changes in postmenopausal women with different angiotensin-converting enzyme insertion/deletion polymorphisms of interest

Lingxiao He, MS,1,2 Xinming Zhang, MS,1 Yuanyuan Lv, PhD,1 Boya Gu, MS,1 and Li Zhao, PhD1

Abstract

Objective: The aim of the study was to explore the association between angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism and muscle adaptations to moderate-intensity resistance training in postmenopausal women.

Methods: Forty healthy postmenopausal Chinese women (aged 53-66 years) were recruited and grouped by ACE I/D polymorphism (the homozygous deletion genotype [DD], n = 12; the I allele carriers [II/ID], n = 28). All participants performed an 8-week full-body resistance training program at moderate intensity with 15-repetition maximum. Upper- and lower-limb muscle mass, grip and back strength, anatomical cross-sectional area of the rectus femoris (ACSA_{Rk}), isokinetic knee extension strength (MVC_{KExt}) and knee flexion strength were measured before and after training.

Results: Our results showed significant genotype \(\times \) time interaction in ACSA_{Rk} and MVC_{KExt} (\(P = 0.007 \) and \(P = 0.03 \), respectively) with the DD group having greater changes in corresponding parameters than the I-allele carriers (\(P = 0.012 \) and \(P = 0.018 \), respectively). Multivariate linear regression results showed that the ACE DD genotype was positively related to the grip strength adaptation (\(r = 0.48, P = 0.05 \)).

Conclusions: This study improves our understanding of the association between the ACE I/D polymorphism and muscular responses to moderate intensity resistance training among postmenopausal women and revealed that the DD genotype has predominant adaptations in grip strength, rectus femoris size, and knee extensor strength.

Key Words: ACE I/D polymorphism – Muscle changes – Postmenopausal women – Resistance training.

D}

creased physical performance, muscle mass, and muscle strength are typical characteristics of aging. The muscle function and strength of women decline significantly after menopause.1 Many studies have reported the positive effect of resistance training on ameliorating muscle degeneration in postmenopausal women by improving muscle strength and muscle quality (the ratio of maximum isometric strength to lean tissue mass),2 increasing muscle volume,3 and preserving bone mineral density.4,5 Notably, the training response differs among individuals. Ahtiainen et al6 reported adaptation differences in muscle size and strength after a 6-month resistance training program with a wide range of variance from −11% to 60%. Genetic composition is a factor that related to this individual variance. Many gene polymorphisms are associated with athletic performance and physical capability,7 among which is the polymorphism of the angiotensin-converting enzyme (ACE) gene that encodes ACE, which plays an important role in blood pressure regulation through the renin-angiotensin system and the kallikrein-kinin system. The insertion (I) or deletion (D) polymorphism of ACE is determined by the presence or absence of a 287-bp Alu repeat sequence within intron 16. Studies have reported a connection between ACE I/D polymorphism and exercise events with a dominant percentage of I allele among top athletes in endurance-oriented activities such as marathon running,8 long-distance swimming,9 and mountain climbing.10 Meanwhile, the D allele is more frequently found in strength and speed-oriented activities such as sprinting and short-distance swimming.11

Although the relationship between ACE I/D polymorphism and physical performance in athletes has been well-reported, the possible connection between ACE I/D alleles and resistance training adaptations in postmenopausal women remains poorly understood. Related studies will improve our understanding of the association between gene polymorphisms and individual variances in muscular changes induced by resistance training. Previous studies reported that 8-week resistance training programs can significantly increase muscle
methodology. \textcite{12} Therefore, this research was conducted to explore muscle adaptations after 8 weeks of moderate-intensity resistance training in Chinese postmenopausal women with different \textit{ACE} I/D polymorphism. Considering the close relationship between the D allele and muscle strength, we hypothesized that women with the homozygous deletion (DD) genotype had greater improvements in muscular parameters than the I-allele carriers after resistance training.

\section*{Methods}

\textbf{Participants}

A total of 163 independently living postmenopausal women were recruited from local communities around Beijing Sport University. Through screening questionnaires, 40 postmenopausal women (aged 53-66 years) were selected for our intervention study. These participants shared the following characteristics: (1) no muscular issues such as osteoporosis or arthritis or nervous system diseases such as Alzheimer disease or Parkinson disease; (2) similar physical activity levels (evaluated by the Physical Activity Readiness Questionnaire15); (3) ability to exercise without a doctor’s guidance (evaluated by the Physical Activity Readiness Questionnaire); (4) no history of hormone therapy or dietary supplements; and (5) no menstrual periods within the previous 12 months. All participants were notified of the training program and provided written informed consent. This study was approved by the Human Ethics Committee of Beijing Sport University (2016010H).

\section*{DNA extraction and angiotensin-converting enzyme insertion/deletion polymorphism analysis}

DNA samples were extracted using a Chelex-100 (Sigma-Aldrich, St. Louis, MI) and proteinase K (Bio Basic Inc, Markham, Canada) protocol15 from buccal cells collected by cotton swabs. Polymerase chain reaction (PCR) was used to amplify the DNA with the forward primer 5’-CTG GAG ACC ACT CCC ATC CTT TCT-3’ and the reverse primer 5’-GAT GTG GCC DNA samples were amplified by GeneAmp 9600 PCR System (Applied Biosystems, Kenilworth, NJ) at 94°C for 5 minutes, followed by 35 cycles of 30 seconds each at 94°C, 60°C, and 72°C. The amplification was ended with a final elongation of 10 minutes at 72°C and was held at 15°C. The reaction system (15 μL) consisted of 1.5 μL of 10× PCR buffer, 0.2 μL of 10 μM of each primer (Sangon Biotech, Shanghai, China), 0.1 μL of 5 U/μL Hot Start Taq polymerase (Takara Bio Inc, Kusatsu, Japan), 1.2 μL of 2.5 mM deoxynucleoside triphosphate Mixture, 1.0 μL of DNA sample, and 11 μL of double-distilled water. To identify the \textit{ACE} I/D genotype, a 3 μL PCR amplicon was electrophoresed on a 2.5% agarose gel with the presence of a 182-bp fragment indicating a D allele and a 469-bp fragment indicating an I allele.

\section*{Training protocol}

Resistance training was performed nonconsecutively three times per week for 8 weeks at the Tennis Complex Training Hall of Beijing Sport University. The training protocol consisted of three sets of the following eight exercises: shoulder press, shoulder pull down, chest press, arm curl, knee extension/flexion, and hip extension/flexion. Each set included 1 minute of exercise and 1 minute of rest. The participants performed the exercise on muscle workout equipment (Technogym, Cesena, Italy) at a moderate intensity with a 15-repetition maximum (RM). The load for each participant for each exercise was evaluated and adjusted every 2 weeks by certified trainers. Each participant performed a 10-minute warm-up on a cycle ergometer before the training and 20 minutes of stretching after the training. All participants were trained under the guidance of certified trainers and advised to maintain their regular lifestyle during the study.

\section*{Parameter measurements}

Body composition was analyzed using an Inbody 720 (BioSpace, Seoul, South Korea), which has good consistency with magnetic resonance imaging estimates of body composition (intra-class correlation coefficient [ICC] = 0.73-0.97) in middle-aged women.17 The measurements were taken according to the manufacturer’s instructions. Before the test, the participants were asked to remove any metal attachments and stand barefoot on the electrodes. During the test, they were asked to stand still and look straight forward with their upper limbs slightly abducted from the trunk. The waist-hip ratio (WHR) and skeletal muscle masses of the upper (SMM\textsubscript{UPPER}) and lower (SMM\textsubscript{LOWER}) limbs were recorded for further analyses.

Grip strength of the dominant hand was measured using a WCS-II grip strength dynamometer (Jianmin, Beijing, China). The participants were tested in a standing position with their arms straight down. Back strength was measured using a BLJ-II back strength dynamometer (Jianmin) according to the manufacturer’s instructions. Three trials were completed of both strength tests and the highest values were analyzed.

The anatomical cross-sectional area of rectus femoris (ACSA\textsubscript{RF}) on the dominant side was measured using B-mode ultrasonography with a 10-MHz probe of a Vivid 7 system (GE Healthcare, Chicago, IL). The participants were tested in a supine position. A pillow was placed beside the dominant leg to keep the toes in an upright pointed position during the scan. The probe was placed at the point at four-fifths of the length from the anterior superior iliac spine to the superior patellar border. The ACSA\textsubscript{RF} of each participant was measured three times and the mean value was analyzed. The ultrasound scans were made by the same technician with good test consistency (ICC = 0.81).

A Biodex System 3 (Biodex Medical Systems, Shirley, NY) was used to measure isokinetic knee strength. Before the measurement, the participants were asked to perform two warm-up sessions. The first section was a general warm-up. The participants were asked to ride on a free-loaded cycle ergometer for 5 minutes. The second section consisted of familiarization to the testing process. The participants were
ACE I/D POLYMORPHISMS AND TRAINING ADAPTATION

TABLE 1. Descriptive data of participants in different angiotensin-converting enzyme insertion/deletion subgroups at baseline level

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>DD</th>
<th>II/ID</th>
<th>P</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>12</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>57.5 ± 4.6</td>
<td>59.6 ± 4.1</td>
<td>0.330</td>
<td>–</td>
</tr>
<tr>
<td>Body mass, kg</td>
<td>67.3 ± 4.6</td>
<td>59.0 ± 5.9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Height, m</td>
<td>1.62 ± 0.04</td>
<td>1.58 ± 0.04</td>
<td>0.048*</td>
<td>0.806</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.7 ± 1.8</td>
<td>23.6 ± 2.0</td>
<td>0.046*</td>
<td>0.877</td>
</tr>
<tr>
<td>WHR</td>
<td>0.87 ± 0.05</td>
<td>0.85 ± 0.03</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Light activity (MET-min/wk)</td>
<td>2,398.0 ± 399.1</td>
<td>2,350.1 ± 316.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Moderate activity (MET-min/wk)</td>
<td>4,195.0 ± 7.51</td>
<td>4,026.4 ± 85.04</td>
<td>0.463</td>
<td>–</td>
</tr>
<tr>
<td>Vigorous activity (MET-min/wk)</td>
<td>1,026.7 ± 6.5</td>
<td>1,062.9 ± 7.51</td>
<td>0.749</td>
<td>–</td>
</tr>
</tbody>
</table>

ACE I/D, angiotensin-converting enzyme insertion/deletion; BMI, body mass index; DD, homozygous deletion; II/ID, I allele carriers; WHR, waist-hip ratio.

*Significantly different between DD and II/ID groups, P < 0.05.

asked to complete three repetitions of knee extension and flexion under a 180°/s model and one repetition under a 60°/s model. Gravity effect torque was adjusted at 30° of knee flexion (0° representing full extension). The formal test consisted of eight repetitions of full-range isokinetic knee extension and flexion at 60°/s. The peak torques of the knee extensors (MVC\textsubscript{KE}) and flexors (MVC\textsubscript{KF}) were analyzed.

Statistical analysis

Each measurement was made by the same blinded assessor before and after the resistance training. Descriptive data are reported as mean ± standard deviation and were analyzed using SAS 9.4 (SAS Institute, Cary, NC). Considering that the ACE DD genotype is predominant in power performance, the participants were separated into the II/ID group (n = 28) and the DD group (n = 12). Muscular phenotypes were normalized for body mass. The Shapiro-Wilk normality test was used to check the normality of each parameter. Intergroup comparisons were made by the Student t test at baseline and post-training levels. To compare genotype-related adaptations after the resistance training, repeated-measures analysis of variance (ANOVA) was used in normally distributed parameters with genotype and time as two factors. To study the association between ACE I/D polymorphism and muscular changes, multivariate linear regression analysis was used with percentage changes of muscular phenotypes as dependent variables and ACE I/D polymorphism, age, height, and baseline body mass as independent variables. Statistical significance was set at a level of 0.05.

TABLE 2. Comparisons of anthropometric parameters between angiotensin-converting enzyme insertion/deletion subgroups at baseline and post-training levels

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DD Baseline</th>
<th>DD Post-training</th>
<th>P values from repeated measures ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>12</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.7 ± 1.8</td>
<td>25.7 ± 1.6</td>
<td>0.034 0.540 0.422</td>
</tr>
<tr>
<td>ACSARF, mm²</td>
<td>90.77 ± 7.51</td>
<td>181.69 ± 19.93</td>
<td>0.022 <0.001 0.007</td>
</tr>
<tr>
<td>SMM\textsubscript{UPPER}, kg/kg</td>
<td>0.06 ± 0.003</td>
<td>0.06 ± 0.003</td>
<td>0.452 <0.001 0.942</td>
</tr>
<tr>
<td>SMM\textsubscript{LOWER}, kg/kg</td>
<td>0.09 ± 0.003</td>
<td>0.20 ± 0.019</td>
<td>0.349 <0.001 0.362</td>
</tr>
<tr>
<td>MVC\textsubscript{KE}, N m/kg</td>
<td>1.25 ± 0.15</td>
<td>1.53 ± 0.19</td>
<td>0.440 <0.001 0.030</td>
</tr>
<tr>
<td>MVC\textsubscript{KF}, N m/kg</td>
<td>0.61 ± 0.13</td>
<td>0.79 ± 0.20</td>
<td>0.634 <0.001 0.735</td>
</tr>
<tr>
<td>Grip strength, kg/kg</td>
<td>0.33 ± 0.03</td>
<td>0.41 ± 0.04</td>
<td>0.032 <0.001 0.284</td>
</tr>
<tr>
<td>Back strength, kg/kg</td>
<td>0.79 ± 0.17</td>
<td>0.89 ± 0.20</td>
<td>0.272 <0.001 0.726</td>
</tr>
</tbody>
</table>

ACEARF, anatomical cross-sectional area of rectus femoris; ANOVA, analysis of variance; BMI, body mass index; DD, homozygous deletion; II/ID, I allele carriers; MVC\textsubscript{KE}, isokinetic knee extension strength; MVC\textsubscript{KF}, isokinetic knee flexion strength; SMM\textsubscript{LOWER}, skeletal muscle mass of lower limbs; SMM\textsubscript{UPPER}, skeletal muscle mass of upper limbs.

*Significantly different between DD and II/ID groups at the same testing time point, P < 0.05.

<acc>Copyright © 2019 The North American Menopause Society. Unauthorized reproduction of this article is prohibited.</acc>
level (Fig. 1) was significantly larger in the DD group ($P = 0.012$). Results of repeated-measures ANOVA showed significant genotype and time interactions in ACSARF and MVCK ([$P = 0.007$ and $P = 0.03$, respectively]) with high statistical powers (Supplementary Table S2, http://links.lww.com/MENO/A417).

As presented in Table 3, percentage changes of SMM UPPER, MVCKF, and back strength did not differ between the two genotype groups. The increase in mean SMM LOWER value in the DD group was significantly higher than that in the II/ID group ($P = 0.05$). MVCK and grip strength in the DD group increased by 22.5% and 21.4%, respectively. Both parameters were significantly higher than that in the II/ID group ($P = 0.018$ and $P = 0.001$, respectively).

Associations between percentage changes of muscular phenotypes and ACE I/D polymorphism

As shown in the linear regression results (Table 4), participants with the DD genotype had greater increases in muscular parameters except for back strength. Age was not significantly associated with changes in muscular phenotypes. This might be related to the relatively narrow age range of our participants. Based on the linear regression results, the ACE DD genotype was positively associated with the percentage change in grip strength ($r = 0.48, P = 0.05$).

DISCUSSION

The main findings of this study regarding healthy post-menopausal women included: (1) ACE I/D polymorphism is

TABLE 3. Percentage changes of muscular parameters after training

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DD</th>
<th>II/ID</th>
<th>P values from t test</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass, kg</td>
<td>0.14 ± 1.47</td>
<td>−0.60 ± 1.90</td>
<td>0.409</td>
<td>−</td>
</tr>
<tr>
<td>ACSARF, mm²</td>
<td>100.01 ± 11.17</td>
<td>80.85 ± 15.11</td>
<td>0.012*</td>
<td>0.990</td>
</tr>
<tr>
<td>SMM UPPER, kg/kg</td>
<td>2.94 ± 1.79</td>
<td>2.83 ± 2.06</td>
<td>0.916</td>
<td>−</td>
</tr>
<tr>
<td>SMM LOWER, kg/kg</td>
<td>128.36 ± 15.86</td>
<td>109.89 ± 19.17</td>
<td>0.050*</td>
<td>0.859</td>
</tr>
<tr>
<td>MVCK, N m/kg</td>
<td>22.54 ± 6.05</td>
<td>16.00 ± 4.77</td>
<td>0.018*</td>
<td>0.879</td>
</tr>
<tr>
<td>MVCKF, N m/kg</td>
<td>27.41 ± 6.21</td>
<td>25.67 ± 5.53</td>
<td>0.542</td>
<td>−</td>
</tr>
<tr>
<td>Grip strength, kg/kg</td>
<td>21.44 ± 1.80</td>
<td>14.73 ± 5.56</td>
<td>0.001*</td>
<td>>0.999</td>
</tr>
<tr>
<td>Back strength, kg/kg</td>
<td>12.98 ± 7.51</td>
<td>12.79 ± 6.85</td>
<td>0.957</td>
<td>−</td>
</tr>
</tbody>
</table>

ACSA, anatomical cross-sectional area of rectus femoris; DD, homozygous deletion; II/ID, I allele carriers; MVCK, isokinetic knee extension strength; MVCKF, isokinetic knee flexion strength; SMM LOWER, skeletal muscle mass of lower limbs; SMM UPPER, skeletal muscle mass of upper limbs.

*Significantly different between DD and II/ID groups, $P < 0.05$.

FIG. 1. Ultrasound images of rectus femoris measured before and after resistance training. Anatomical cross-sectional areas of rectus femoris are outlined with yellow circles. **A**, Before training (DD group). **B**, After training (DD group). **C**, Before training (II/ID group). **D**, After training (II/ID group).
Table 4: Multivariate linear regression results of angiotensin-converting enzyme insertion/deletion polymorphism and percentage changes in muscular parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ΔACSARF</th>
<th>ΔSMMLOWER</th>
<th>ΔSMMUPPER</th>
<th>ΔMVCK</th>
<th>ΔMVCKE</th>
<th>ΔGrip strength</th>
<th>ΔBack strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE I/D polymorphism (DD = 0, II/ID = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.13</td>
<td>0.92</td>
<td>0.05</td>
<td>0.02</td>
<td>0.31</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>0.66</td>
<td>0.90</td>
<td>0.96</td>
<td>0.35</td>
<td>0.26</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>0.13</td>
<td>0.06</td>
<td>0.01</td>
<td>0.001</td>
<td>0.06</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>ACE I/D, angiotensin-converting enzyme insertion/deletion; ACSARF, anatomical cross-sectional area of rectus femoris; MVC, isokinetic knee flexion strength; SMM, skeletal muscle mass of lower limbs; SMMUPPER, skeletal muscle mass of upper limbs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACE I/D polymorphism is related to a significantly higher BMI and (2) ACE I/D polymorphism responses were different in rectus femoris size, knee extensor strength, and grip strength after moderate-intensity resistance training with the ACE DD homozygote having greater improvement than the I-allele carriers. Obesity and overweight are related to an increased risk of falls among older people. The increased abdominal fat deposition caused by low estrogen in postmenopausal women implies that hormonal changes contribute more to changes in body fat distribution than general obesity. Our study found that postmenopausal women with the ACE DD genotype had a significantly higher mean BMI than I-allele carriers, which might contribute to the increased risk of cardiovascular diseases among the ACE DD carriers.

It is well established that resistance training can help ameliorate musculoskeletal degeneration during the aging process. Correa et al. found that knee extensor strength and rectus femoris volume were improved by 40% and 38%, respectively, in older women after a 12-week resistance training program with a 15 to 20 RM load. Similarly, we found increases of >16% in normalized MVCK and >80% in ACSARF after moderate-intensity resistance training. However, the adaptive change of ACSARF in our study contradicted the finding of Sattler et al., who reported no significant change in mean ACSARF value after a 12-week resistance training with an 8 to 12 RM load among perimenopausal women. One possible explanation might be that our participants had smaller muscle sizes (0.85-0.91 cm²) than in Sattler study (2.2 cm²). Therefore, the muscle sizes of our participants were much easier to improve after resistance training. Moreover, we scanned ACSARF at the point of four-fifths of the length from the anterior superior iliac spine to the superior patellar border, whereas Sattler measured ACSARF at 39% of the total femoral length from the distal to proximal end. According to the findings of Ema et al., the mean ACSARF value of the distal part demonstrated significantly greater improvement than that of the proximal part after resistance training. Therefore, the inconsistency of the ACSARF change between the study of Sattler et al and our study could have also resulted from different scan positions.

Our study showed differences in adaptive changes of muscle mass between the upper and lower limbs as well as varied increasing rates between muscle mass and muscle strength induced by resistance training. In our study, muscle hypertrophy occurred after training and the improvement in muscle mass in the upper limbs was smaller than that in lower limbs. A possible mechanism of this adaptation difference between the upper and lower limbs might be the different composition of muscle fibers considering that there is a higher portion of type II fibers in the thigh muscles and lower legs than in the upper arms, whereas resistance training mainly induces hypertrophy in type IIA fibers. Such a mechanism is supported by the finding of more decreased muscle power, which is closely related to the type II fibers, in the lower versus upper limbs during aging. In addition to the regional difference in exercise-induced muscle mass changes, incremental rates of muscle mass and muscle strength changes also varied during training. Our results demonstrate that muscle mass increased more than muscle strength, implying the presence of different adaptive mechanisms of muscle mass and muscle strength in resistance training. Both muscle mass and muscle strength can improve with sufficient nutrition during exercise, whereas muscle mass can also be increased through elevated growth hormone and testosterone levels.
both of which play important roles in protein synthesis and can be induced by resistance training. Regarding changes in muscle strength, nervous system alterations are an important factor. Spinal motor neuron loss occurs with aging, a process that results in reduced muscle strength and muscle power regardless of an athlete’s training level. The improvement in neural factors occurs at the beginning of muscle adaptation in resistance training, whereas intramuscular factors become more important as training continues over several months. Therefore, considering the short-term intervention in our study, the adaptation of muscle strength might have resulted from ameliorations in neuromuscular aspects such as increased motor unit recruitment, firing rate, and synchronization.

Several studies on the relationship between ACE I/D polymorphism and muscular changes induced by exercise training were previously reported, but the conclusions remain debatable. Pescatello et al. reported that young participants with the DD genotype had greater increases in elbow flexor strength than their II/ID counterparts after a 12-week upper arm resistance training. In contrast, Charbonneau et al. found no association between the ACE genotype and muscle hypertrophy after a 10-week knee extensor resistance training program in older participants. Our results showed that an 8-week resistance training program helped increase the ACSARef, muscle strength, and muscle mass of postmenopausal women, with the DD genotype having a predominant response. The greater increase in muscle mass in the DD genotype can be attributed to its association with a high ACE level, which facilitates the conversion from Ang I to Ang II. As a hypertrophic factor, Ang II induces muscle fiber growth, enhancing muscle mass and strength. Meanwhile, our linear regression results showed that ACE I/D polymorphism was significantly related to the adaptive change in grip strength, in which the ACE DD participants had greater improvement than the I-allele carriers. Since the increase in grip strength is considered a robust factor of reduced falling risk and improved quality of life, our findings imply that postmenopausal women with the DD genotype might benefit more from resistance training than women with the I allele.

Limitations

Our study has a limited sample size and only explored the association between ACE I/D polymorphism and muscular changes induced by resistance training. In addition to the ACE I/D polymorphism, previous studies found that polymorphisms of other genes such as interleukin-15 receptor subunit alpha, insulin-like growth factor-1, and vitamin D receptor, are related to physical performance. Moreover, a 12-week power training program in older women demonstrated a significant combined effect of ACE I/D and alpha-actinin 3 (ACTN3) R/X polymorphisms with the “power (ACTN3 RR+RX and ACE DD) group” showing greater increases in walking speed, vertical jump, and leg extension strength than the “non-power (ACTN3 XX and ACE II+ID) group.” Considering that muscular phenotypes are overall results of multifactorial and polygenic effects, studies on the combined effect of multiple exercise-related genes can be more informative.

Moreover, in this study, years since menopause and glucose tolerance were not involved in the impact of muscle changes. Wu et al. found that women whose age at menopause were greater than 49 years had a 6% increased risk of impaired glucose tolerance (OR = 1.06) for each year after menopause. Based on this finding, the risk of developing glucose intolerance in our oldest participant (66 years old) was twice that of our youngest participant (53 years old). Since glucose intolerance is negatively related to thigh muscle mass and muscle strength, the difference in glucose intolerance risk among our participants might also be connected with variances in muscular phenotypes.

CONCLUSIONS

In conclusion, this study improves our understanding of the association between ACE I/D polymorphism and muscle adaptations to moderate-intensity resistance training in postmenopausal women. The ACE DD genotype has predominant adaptations in grip strength, cross-sectional area of the rectus femoris and knee extensor strength.

REFERENCES

ACE I/D POLYMORPHISMS AND TRAINING ADAPTATION

