Genetic predictors to acupuncture response for hot flashes: an exploratory study of breast cancer survivors

Sally A.D. Romero, PhD, MPH,1,2 Qing Susan Li, MS,1 Irene Orlov, PhD,1 Mithat Gonen, PhD,1 Hui-Chun Irene Su, MD, MSCE,2 and Jun J. Mao, MD, MSCE1

Abstract
Objective: Because hot flashes are a common symptom experienced by women with breast cancer, we sought to explore genetic predictors associated with response to acupuncture for the treatment of hot flashes.

Methods: Using data from our completed randomized controlled trial (ClinicalTrials.gov identifier: NCT01005108) on hot flashes among breast cancer survivors who provided biomarker collection (N = 108), we extracted and assayed DNA for single nucleotide polymorphisms in genes involved in neurotransmission, thermoregulation, and inflammation (ADORA1, COMT, TCL1A, and TRPV1). For our primary outcome we classified individuals with a 50% or more reduction in their hot flash composite score at the end of treatment as responders. We used Fisher exact test to identify individual and combined single nucleotide polymorphisms associated with treatment response.

Results: Among women (N = 57) who received acupuncture treatment (electro or sham), we found that women who were carriers of at least one of these six genotypes (ADORA1 rs41264025-GA or rs41264025-GT, COMT rs16851029-GG or rs12744240-GT, TCL1A rs2369049-GG, and TRPV1 rs8065080-TT) were more likely to respond to acupuncture for hot flashes than noncarriers (70.3% vs 37.5%, P = 0.035). These six genotypes were not associated with response in women (N = 51) who received pharmacological hot flash treatment (gabapentin or placebo pill; 37.5% vs 37.5%, P = 1.0).

Conclusions: In this exploratory, proof of concept study, we identified six genotypes that may predict response to acupuncture for hot flashes in breast cancer survivors. If confirmed by future studies, these findings may inform the development of personalized acupuncture for managing hot flashes.

Key Words: Acupuncture – Breast neoplasm – Genetics – Hot flashes.
Given the potential of precision medicine for cancer treatment-related symptoms, the objective of this proof of concept study was to explore the association between selected candidate single nucleotide polymorphisms (SNPs) in genes involved in neurotransmission (catechol-O-methyltransferase \([COMT]\)^{14,15} and adenosine A1 Receptors \([ADORA1]\)^{16-18}), thermoregulation (Transient Receptor Potential Cation Channel Subfamily V Member 1 \([TRPV1]\)^{19,20}), and inflammation (T-cell leukemia 1A \([TCL1A]\)^{21,22}) pathways and response to acupuncture for the treatment of hot flashes among breast cancer survivors. We hypothesized that these selected candidate SNPs would be associated with a positive response to acupuncture treatment for hot flashes.

METHODS

Study population

We used data from our completed RCT on hot flashes among breast cancer survivors (Clinicaltrials.gov identifier: NCT01005108).\(^1\)\(^2\) The full details of the completed RCT and the primary findings have been previously published.\(^1\)\(^2\) In brief, women with a history of stages I to III breast cancer, who reported at least two hot flashes per day for the previous 7 days and had hot flashes for at least 1 month before enrollment, were recruited from the Abramson Cancer Center of the Hospital of the University of Pennsylvania (Philadelphia, PA). One hundred twenty women were randomized to four arms (electroacupuncture, sham acupuncture, gabapentin, and placebo pill). One hundred eight women (90% of total) provided a peripheral blood sample, and of these, 84 (78%) women were White. Samples were banked at \(-80°C\) for genetic and biomarker analysis. For the exploratory analyses described in this article, women were grouped into two arms: (1) acupuncture (electro and sham) \((N = 57)\) and (2) pill (gabapentin and placebo) \((N = 51)\) due to the small sample size in each of the four arms \((N\) range: 25-29). The Institutional Review Board of the University of Pennsylvania approved the study protocol.

Primary outcome

The primary outcome was a 50% or more reduction in the weekly average hot flash composite score as measured by the Daily Hot Flash Diary. Each participant recorded the number and severity of daily hot flashes starting from baseline until week 12 and again for 1 week at week 24. The composite score for each day was calculated by multiplying the number of mild, moderate, severe, or very severe hot flashes by 1, 2, 3, or 4, respectively, and adding the values.\(^2\)\(^3\) Based on previous research, we developed a dichotomous outcome that considered those individuals with a 50% or more reduction in their hot flash composite score at the end of treatment to be responders.\(^2\)\(^4\)\(^5\)

SNP genotyping and selection

Based on existing literature of polymorphisms in genes that have been found to play a role in the mechanism of acupuncture, we selected 18 candidate SNPs in genes involved in neurotransmission,\(^1\)\(^4\)\(^5\) thermoregulation,\(^1\)\(^9\)\(^2\)\(^0\) and inflammation\(^2\)\(^1\)\(^,\)\(^2\)\(^2\) pathways. Participant DNA was extracted from buffy coat specimens using the QIAGEN QIAamp 96 DNA Blood Kit (Valencia, CA). SNPs were genotyped using the SNPlex or the OpenArray platform from Applied Biosystems (Foster City, CA). Given the small sample size in each arm, we selected SNPs that had at least a greater than 15% difference in treatment responders (the primary outcome) between the allele groups rather than relying on a \(P\) value.

RESULTS

Genotyping failure rates were less than 1.8%. All SNP distributions satisfied Hardy-Weinberg proportions and were consistent with reported reference SNP frequencies (data not shown). If the frequency for one of the genotypes was less than 5% of the population, we collapsed the SNPs genotypes into two categories. As shown in Table 1, 6 SNPs out of the initial 18 candidate SNPs had a difference of at least more than 15% in treatment responders between the allele groups: \(ADORA1\) rs41264025-GA versus GG; \(ADORA1\) rs16851029-GG versus TT/GT; \(ADORA1\) rs12744240-GT versus GG; \(COMT\) rs6269-GA versus AA/GG; \(TCL1A\) rs2369049-GG versus AA/GG; and \(TRPV1\) rs8065080-TT versus CT/CC.

Because the proportion of women who were carriers of each SNP ranged from 1% to 52% (minor allele frequency ranges from 0.024 to 0.488), we classified women who were carriers of at least one of the six SNPs listed above as carriers of a potentially “responsive genotype.” Seventy percent of women in our population were carriers of this responsive genotype. Among women \((N = 57)\), who received acupuncture treatment, 70.2% were carriers, and among those who received pharmacological treatment \((N = 51)\), 84.3% were carriers.

Figure 1 illustrates the response to treatment (acupuncture or pill) by carrier status of the responsive genotype. Among women who received acupuncture treatment, we found that women who were carriers of at least one of these six SNPs \((ADORA1\) rs41264025-GA or rs16851029-GG or rs12744240-GT, \(COMT\) rs6269-GA, \(TCL1A\) rs2369049-GG, and \(TRPV1\) rs8065080-TT) were more likely to respond to acupuncture for hot flashes than noncarriers (70.3% vs 37.5%, \(P = 0.035\)). To ensure these genotypes were not associated with response to any therapy or enrollment in a clinical trial, we repeated the analyses among women who received pharmacological hot flash treatment and did not find...
any evidence for predicting response (37.5% vs 37.5%, P = 1.0).

DISCUSSION

Considering the prevalence, significance, and impact of hot flashes among breast cancer survivors, 1-4 treatment options that apply a precision medicine framework to optimize hot flash management are needed. In this exploratory, proof of concept study, we identified six SNPs (**ADORA1** rs41264025-GA or rs16851029-GG or rs12744240-GT, **COMT** rs6269-GA, **TCL1A** rs2369049-GG, and **TRPV1** rs8065080-TT) present in 70% of our population that may predict response to acupuncture for hot flashes in breast cancer survivors. Although we were not able to identify literature on genetic predictors associated with acupuncture response to hot flashes, previous research has demonstrated that polymorphisms in genes involved in neurotransmission,14-18 thermoregulation,19,20 and inflammation21,22 have been found to play a role in the mechanism of acupuncture. In particular, **COMT** is involved in neurotransmission by regulating dopamine catabolism and playing a key role in prefrontal cortex processes associated with the placebo effect such as reward, pain, memory, and learning.14,15 We recently found that a polymorphism in **COMT** was associated with response to acupuncture for the management of pain symptoms in women with breast cancer.26

FIG. 1. Response to hot flash treatment by presence or absence of the potentially “responsive genotype” (carrier of at least one of these six SNPs: **ADORA1** rs41264025-GA or rs16851029-GG or rs12744240-GT, **COMT** rs6269-GA, **TCL1A** rs2369049-GG, and **TRPV1** rs8065080-TT).
In addition, ADORA1 is a neuromodulator with inhibitory function, such as antinociceptive properties.18 From previous animal model research, acupuncture has been shown to activate ADORA1 pathways through increased adenosine concentrations at acupoints, which may mediate the local antinociceptive effects and improve neuropathic pain.16,17 Furthermore, the effect of acupuncture has been found to be influenced by the activation of mast cells in acupoints via TRPV1 and ADORA1 pathways.27-29 In addition, TRPV1 plays a role in thermoregulation; mice exposed to a TRPV1 agonist exhibit vasomotor symptom-like responses, such as a drop in core body temperature and cold-seeking behavior.20 These findings suggest that the underlying biological mechanisms associated with acupuncture’s effect through ADORA1 and TRPV1 pathways may explain the response to acupuncture for hot flashes.

Furthermore, TCL1A signals influence proinflammatory cytokines and chemokines through its interactions with Akt kinase and its involvement with cell proliferation, stabilizing mitochondrial membrane potential, and promoting cell survival.22,30 Previous studies have identified four SNPs in high linkage disequilibrium and close to TCL1A, including rs2369049, that are associated with estradiol-induced TCL1A expression, musculoskeletal adverse events in women treated with AIs, and interleukin-17 production.21,22,31 Furthermore, Bao et al32 found that acupuncture appeared to reduce peripheral circulating interleukin-17 in breast cancer survivors. Our findings, in line with these previous studies, suggest biological plausibility that SNP rs2369049 may be involved in the mechanism of acupuncture response via inflammatory pathways.

Given the multiple comparison and exploratory nature of these post hoc analyses, our findings are primarily useful for hypothesis generation and may be at risk for false positives. We, however, did not see any association between the potentially responsive genotype and response to treatment by those in the pill group suggesting that the responsive genotype may be unique to the acupuncture process. Because of the small sample size, we had to combine the electroacupuncture and sham acupuncture into one group. Because acupuncture is a complex intervention involving both the process of delivery and needling specificity, future research may help uncover a genetic signature that predicts response to different types of acupuncture.

CONCLUSIONS

Despite this study’s limitations, our findings in this exploratory, proof of concept study suggest that six genotypes related to neurotransmission, thermoregulation, and inflammation pathways may predict response to acupuncture for the treatment of hot flashes. Future validation of these findings in an independent study with an adequate sample size is warranted and has the potential to personalize the integration of acupuncture based on host genetics to optimize hot flash management.

Acknowledgments: The authors would like to thank all the breast cancer survivors, clinicians, and research staff who contributed to this project.

REFERENCES

GENETIC PREDICTORS TO ACUPUNCTURE RESPONSE

