The effect of a randomized 12-week soy drink intervention on everyday mood in postmenopausal women

Ellen E.A. Simpson, PhD,1 Orlaith N. Furlong,2 Heather J. Parr, PhD,3 Stephanie J. Hodge, PhD,2 Mary M. Slevin, PhD,2 Emeir M. McSorley, PhD,2 Jacqueline M. McCormack, PhD,4 Christopher McConville, PhD,1 and Pamela J. Magee, PhD2

Abstract

Objective: Dietary soy may improve menopausal symptoms, and subsequently mediate mood. This novel study examines various doses of dietary soy drink on everyday mood stability and variability in postmenopausal women.

Methods: Community-dwelling women (n = 101), within 7 years postmenopause, consumed daily either a low (10 mg, n = 35), medium (35 mg, n = 37), or high (60 mg, n = 29) dose of isoflavones, for 12 weeks. Menopausal symptoms and repeated measures of everyday mood (positive [PA] and negative [NA] affect) (assessed at four time points per day for 4 consecutive days, using The Positive and Negative Affect Schedule) were completed at baseline and follow-up.

Results: The dietary soy intervention had no effect on everyday mood stability (for PA [F{2,70} = 0.95, P = 0.390] and NA [F{2,70} = 0.72, P = 0.489]) or variability (for PA [F{2,70} = 0.21, P = 0.807] and for NA [F{2,70} = 0.15, P = 0.864]), or on menopausal symptoms (for vasomotor [F{2,89} = 2.83, P = 0.064], psychological [F{2,89} = 0.63, P = 0.535], somatic [F{2,89} = 0.32, P = 0.729], and total menopausal symptoms [F{2,86} = 0.79, P = 0.458]). There were between-group differences with the medium dose reporting higher PA (low, mean 24.2, SD 6; and medium, mean 29.7, SD 6) and the low dose reporting higher NA (P = 0.048) (low, mean 11.6, SD 2; and high, mean 10.6, SD 1) in mood scores. Psychological (baseline M = 18 and follow-up M = 16.5) and vasomotor (baseline M = 4.2 and follow-up M = 3.6) scores declined from baseline to follow-up for the overall sample.

Conclusions: Soy isoflavones had no effect on mood at any of the doses tested. Future research should focus on the menopause transition from peri to postmenopause as there may be a window of vulnerability, with fluctuating hormones and increased symptoms which may affect mood.

Key Words: Hot flush – Hot flush – Isoflavones – Menopause.
women seeking out alternatives to HT, of which soy is one. Soy contains a high concentration of isoflavones, plant-based phytoestrogens, including genistein, daidzein, and glycitein, which have a similar chemical structure to 17β estradiol, binding to estrogen receptors and mimicking their effects. They are recommended for management of vasomotor symptoms. Isoflavones have several health benefits for MT such as promoting heart health, bone mass, and alleviation of vasomotor symptoms. Some soy isoflavones, such as glycine, have been found to produce insulinotrophic, antiestrogenic, antiproliferation, antioxidant, anti-inflammatory, and cholesterol-lowering effects in women at midlife. Their impact on psychological factors at MT are less clear.

Dietary soy products were found to reduce psychological symptoms and improve well-being in menopausal women. In a 6-week intervention, participants consumed 200 mL soy drink per day, with improvements in menopausal symptoms and quality of life. Positive effects were noted for a soy drink (12.5 g of soy protein with genistein, 13 mg, and daidzein, 4.13 mg/d) and an exercise intervention improving menopausal symptoms and psychological well-being. These findings were further supported by reviews of soy products. However, several studies reported no beneficial effects after a 6-month dietary soy intervention (100 mg isoflavones in flour) for depressive symptoms, or a 3-month intervention for menopausal symptoms (118 mg of isoflavones in supplement) or 8 months consumption of 500 mL of soy drink per day (containing 28.86 mg/dL of genistein and 8.25 mg/dL of daidzein) on quality of life in menopausal women. Mood tends to be assessed using symptom scales or visual analog scales (VAS), in the few studies that have looked at mood during menopause, rather than by repeated measures employing scales designed to capture mood change.

To the best of our knowledge, this is the first study to look at the effect of a 12-week dietary soy intervention on everyday PA and NA stability and variability in postmenopausal women. The first objective was to examine if PA and NA were influenced pre to postintervention. The second objective was to determine the effect on mood with different concentrations of isoflavones consumed over time.

METHODS

Study design and participants

This study was a 12-week prospective randomized trial, conducted between October, 2015 and May, 2018, looking at the effect of a soy drink intervention on cognitive function (results will be reported elsewhere), menopausal symptoms, and everyday PA and NA in postmenopausal women. After ethical approval from the University Research Ethics Committee, women were recruited from community groups and organizations throughout Ulster (an overview of this process is given in the flowchart in Fig. 1). All the participants were required to be within 7 years postmenopausal, defined using the WHO definition, as cessation of menses for at least 12 months at hormone levels >30 mIU/mL for follicle-stimulating hormone. They were excluded if taking HT, had an abnormal blood profile (assessed by Sysmex KX21-N, Sysmex UK Ltd, Milton Keynes, UK), and liver and kidney function tests (assessed photometrically by Cobas 6000 analyzer [Cobas C501 module], Roche Diagnostics at Causeway Hospital, Coleraine, UK), had a hysterectomy and ovariectomy, were taking antibiotics or psychoactive medication, and if they had a history of cardiovascular disease, cancer, diabetes, thyroid, renal or kidney disease, alcohol, or drug abuse. Self-reported consumption of soy-based products beyond two portions per week was also an exclusion criterion.

Participants were also screened for cognitive decline and psychological distress as determined by the Mini Mental State Examination (MMSE) (scores less than 24 were excluded) and General Health Questionnaire-28 (adopting 26 as the threshold for the presence of distress), respectively.

Those eligible were invited for baseline measures on mood (The Positive and Negative Affect Schedule [PANAS] to be completed over 4 days before beginning the soy drink intervention) and menopausal symptoms. They were then randomly allocated to one of three conditions a low (10 mg = 100 mL), medium (35 mg = 350 mL), or high (60 mg = 600 mL) dose of isoflavones contained within a soy drink, by an independent clinical trials manager using Allocation by Minimisation in Clinical Trials software, a placebo with no isoflavones was not available, a low dose was used that has not been previously shown to have a beneficial effect on menopausal symptoms. Participants were recommended to consume a specific volume of their soy drinks throughout each day for 12 weeks. This approach provided the opportunity to look at doses that are commercially available and can be incorporated into the daily diet and is comparable to previous studies. Mood and menopausal symptoms were re-assessed postintervention. Researchers contacted participants throughout the study and monitored their progress intermittently.

Compliance was monitored by measuring plasma concentrations of soy isoflavones, using LC-MS/MS by LGC Limited (Cambridgeshire, UK). Participants were instructed to consume the amounts across each day, rather than at once, as previous research suggests it is more effective at reducing menopausal symptoms. The study was registered at https://www.clinicaltrials.gov (NCT03561662).

Variables

All questionnaires used in this study, except for the MMSE, which was administered by the researcher, were self-report. Sociodemographic variables (age, education, BMI, and menopause history), health, lifestyle, and menopausal status were assessed using a questionnaire employed in previous studies based on the European Prospective Investigation into Cancer and Nutrition Health and Lifestyle Questionnaire, and adapted by Simpson et al.

An indication of cognitive decline was assessed using the MMSE. Scores are classified as follows: 24 to 30, no...
cognitive impairment; 18 to 23, mild cognitive impairment; and 0 to 17, severe cognitive impairment. The present study participant inclusion criteria were set at no impairment.

Screening for psychological distress was assessed using The General Health Questionnaire-28 (GHQ-28) — a 28-item scale with four subscales assessing somatic symptoms, anxiety/insomnia, social dysfunction, and severe depression. For inclusion in the present study, a total score of 26 or less was required (the GHQ-28 cut-off for distress).

Mood was assessed using PANAS — a 20-item scale comprised of 10 items assessing PA (eg, happy, alert) and 10 items measuring NA (eg, nervous, irritable). PA is associated with feelings of alertness, enthusiasm, and happiness, and NA with displeasure and dissatisfaction. These are regarded as higher-level mood states, accounting for the majority of the variance in discrete moods. Momentary mood was measured four times a day for 4 consecutive days: upon rising; at 14.30; after dinner (17.00-18.00), and at 22.30, at baseline and follow-up. The scales have high internal consistency, with Cronbach’s alpha ranging from 0.84 to 0.90 for PA scale and 0.84 to 0.87 for NA scale, and proven validity.

The dependent trait measures of affect were based on overall intraindividual means and SDs for PA and NA for the 4 days.

Menopausal symptoms were assessed by the 21-item Greene Symptom Checklist measuring psychological, somatic, and vasomotor symptoms. Each item was rated on a 4-point Likert scale (0 = not at all, 1 = a little, 2 = quite a bit, 3 = extremely), a higher score being indicative of greater severity of symptoms. It has proven reliability for each subscale (test retest reliabilities of $r = 0.87$ for psychological; $r = 0.84$ for somatic, and $r = 0.83$ for vasomotor), and content and construct validity.

Assessed for Eligibility (n=394)

Excluded (n=279)
Not meeting inclusion criteria (n=146)
Declined to participate (n=133)

Randomized (n=115)

Allocation
Allocated to 10mg/day (n=39)
Received allocated intervention (n=39)

Allocated to 35mg/day (n=38)
Received allocated intervention (n=38)

Allocated to 60mg/day (n=38)
Received allocated intervention (n=38)

Follow-Up
Discontinued intervention
(n=4)
Sickness (n=2)
Antibiotics (n=2)

Discontinued intervention (n=1)
No longer wished to participate

Discontinued intervention (n=9)
Due to the size of treatment
(n=7)
Sickness in family (n=1)
Breast Cancer (n=1)

Analysis

Analyzed (n=35)

Analyzed (n=37)

Analyzed (n=29)

FIG. 1. Flowchart showing recruitment of participants.
TABLE 1. Sample characteristics for age and education level

<table>
<thead>
<tr>
<th>Measure</th>
<th>Soy isoflavone treatment group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in y, mean (SD)</td>
<td>Low (n = 35)</td>
</tr>
<tr>
<td>Education level (n)</td>
<td>53.69 ± 3.72</td>
</tr>
<tr>
<td>Primary</td>
<td>0</td>
</tr>
<tr>
<td>Secondary</td>
<td>19</td>
</tr>
<tr>
<td>Tertiary</td>
<td>15</td>
</tr>
</tbody>
</table>

Data analyses

Statistical analyses were performed using the Statistical Package for Social Sciences (SPSS) version 24. Before data analyses, the psychological data were checked for normality by first examining statistics for skewness and kurtosis which were within an acceptable range. Plasma isoflavones were analyzed using Kruskal-Wallis with post-hoc Mann-Whitney U Tests. A series of 2 (time: baseline and follow-up) × 3 (dose: low, medium, and high isoflavones) analysis of variance (ANOVA) with repeated measures were conducted to establish the effect of the intervention on mood and menopausal symptoms.

RESULTS

Sample description

In all, 101 postmenopausal women completed the study. As the original power calculation was based on cognition, a retrospective one was carried out to confirm the sample size required for mood, based on a small effect size of 0.2, found in a previous study on mood and dietary intervention, with a power of 0.8 and a 0.05 level of significance, 66 participants were required. An overview of the age range across the groups and educational level in each group is given in Table 1. Participants were within an expected age range for menopause, with just over half of the sample having tertiary level education.

Compliance with soy intervention

Compliance was assessed by plasma isoflavone concentrations and is given in Table 2. Blood samples were available for isoflavones analysis for 95 participants at baseline and 87 postintervention. There were no differences found for isoflavone concentrations between the groups at baseline. At follow-up, genistein concentration was higher in the medium (P = 0.007) and high (P = 0.013) dose groups compared with the low-dose group. Postintervention daidzein was higher in the medium (P = 0.006) and high (P = 0.029) dose groups compared to the low-dose group. No group differences were noted postintervention for isoflavone concentrations. Feedback from participants after the intervention showed the majority adhered to the dose given and were creative in adding it to their diet, in coffee, tea, porridge, and puddings. Those that had experienced problems with consumption of the specified volume were more likely to be from the high dose, with seven women failing to complete the intervention for this reason.

The effect of dietary soy on mood

To determine the dietary soy intervention effect on mood and menopausal symptoms, repeated-measures ANOVAs were carried out. These aimed to determine the change in mood (stability and variability) and menopausal symptoms over time, group differences between the three soy isoflavone doses, and interaction effects to detect the impact of the soy intervention. An overview of the results is given in Table 3.

Mood stability and dietary soy

Stability of mood was established by calculating the means of the 16 measures of PA and the 16 measures of NA recorded separately for baseline and follow-up. There were no changes in mood from baseline to postintervention for PA (F[1, 70] = 1.10, P = 0.296) or NA (F[1,70] = 0.42, P = 0.521). There was a difference between the groups for dose for PA (F[2,70] = 6.6, P = 0.002), Bonferroni post-hoc tests showed that low dose (M = 24.2) differed significantly from the medium dose (M = 29.7), with the latter reporting higher PA scores (P = 0.002). There was a difference between the groups for NA (F[2,70] = 3.12, P = 0.05), Bonferroni post-hoc tests showed that low dose (M = 11.6) differed significantly from the high dose (M = 10.6), with the latter reporting lower NA scores (P = 0.048). There were no interaction effects for time and dose for PA (F[2,70] = 0.95, P = 0.390) and NA (F[2,70] = 0.72, P = 0.489).

Mood variability and dietary soy

Mood variability is established by looking at the SD of the 16 measures of PA and the 16 measures of NA recorded separately at baseline and follow-up. There were no differences found for isoflavone concentrations. Feed-

TABLE 2. Plasma isoflavone concentrations for genistein and daidzein at baseline and 12 weeks of soy drink intervention to determine compliance

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Low (n = 35)</th>
<th>Medium (n = 37)</th>
<th>High (n = 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genistein (ng/mL)</td>
<td>10.01 (22.07)</td>
<td>82.75 (124.6)</td>
<td>9.83 (24.25)</td>
</tr>
<tr>
<td>Daidzein (ng/mL)</td>
<td>5.03 (11.88)</td>
<td>20.44 (30.82)</td>
<td>2.29 (4.37)</td>
</tr>
</tbody>
</table>

Mean (SD) given for all values.

4 Menopause, Vol. 26, No. 8, 2019 © 2019 The North American Menopause Society
TABLE 3. Means (SD) for mood measures and menopausal symptoms at baseline and follow-up, showing effects for time, dose, and interactions

<table>
<thead>
<tr>
<th>Isoflavone dose</th>
<th>Baseline</th>
<th>12-Week follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>PA mood mean</td>
<td>24.2 (6)</td>
<td>29.7 (7)</td>
</tr>
<tr>
<td>PA mood SD</td>
<td>6.2 (2)</td>
<td>7.5 (5.3)</td>
</tr>
<tr>
<td>NA mood mean</td>
<td>11.7 (2)</td>
<td>10.9 (1)</td>
</tr>
<tr>
<td>NA mood SD</td>
<td>1.8 (2)</td>
<td>1.4 (2)</td>
</tr>
<tr>
<td>Psychological symptoms</td>
<td>18.3 (4)</td>
<td>18.5 (5)</td>
</tr>
<tr>
<td>Somatic symptoms</td>
<td>9.8 (2)</td>
<td>9.7 (2)</td>
</tr>
<tr>
<td>Vasoemotor symptoms</td>
<td>4.5 (2)</td>
<td>4.5 (2)</td>
</tr>
<tr>
<td>Total symptoms</td>
<td>34.6 (6)</td>
<td>34.8 (7)</td>
</tr>
</tbody>
</table>

Mean (SD) given for all values, except PA. Differences for time: changes in the variables between baseline and follow up. Dose: between group difference for low (10 mg) medium (35 mg) and high (60 mg) isoflavone and 2 (time) x 3 (dose) interactions. Significant P values are accepted as <0.005. N values changed for mood and menopausal symptoms across the groups in the analysis as the datasets were not complete across the two time points, for mood the ANOVA are based on: low (n = 29), medium (n = 34), and high (n = 26). Mood mean = the mean of the 16 measures taken to represent respective mood types and represents the extent to which mood varies over the assessment period. Mood SD = the SD of the 16 mood measures taken to represent respective moods and is measure of the extent to which mood varies over the assessment period.

NA, negative affect; PA, positive affect.

DISCUSSION

To the best of our knowledge, this is the first randomized trial looking at the effects of dietary soy on everyday mood stability and variability of PA and NA. In the present study, mood was assessed at baseline and postintervention, using 16 repeated measures of mood (four times a day for 4 consecutive days), employing a well-established method, and addressing a methodological weakness in other studies. The findings suggest that doses of soy (isoflavones 10, 35, and 60 mg/d) used in this study had no effect on stability (mean) or variability (SD) of everyday PA or NA, nor on menopausal symptoms.

Isoflavones had no effect on everyday mood in this study, in keeping with previous dietary soy studies, looking at general measures of quality of life and psychological well-being at menopause. Similarly, using a protocol comparable with the present study, supplementation with 60 mg isoflavones (capsules) per day for either 6 or 12 weeks, had no effect on menopausal symptoms or mood assessed using VAS. However, our findings are contradictory to other soy interventions (isoflavone consumption ranged from 60 to 160 mg/d) that reported improvements in quality of life and psychological symptoms in postmenopausal women. The amount of soy in the current study is comparable to some studies, but lower than in others. The amount consumed in the present study for the medium and high doses are within the recommended dose for management of menopausal symptoms by the European Food Safety Authority guidelines, which recommends 35 to 150 mg/d. However, the doses used in the present study may not have been taken for long enough as another intervention found 60 mg/d of isoflavones taken for 6 months had a beneficial effect on VAS mood postintervention.

There was no change in menopausal symptoms postintervention. Most of the women in the present study were all postmenopausal for 3 years or more before taking part in the study. Menopausal symptoms were much lower than reported for a sample of recently menopausal women, just 12 months cessation of menses. The means and SD for PA and NA are comparable with previous research looking at older women aged 55 to 70 years. Previous research looking at MT suggests that women are more at risk of mood disturbances during the perimenopausal phase, where hormone fluctuations and increased menopausal symptoms may result in a “window of vulnerability,” characterized by increases in NA and depressive symptoms. Therefore, in the present study, we may have missed this most turbulent time occurring closer to MT (from peri to postmenopause); this may be the time that dietary soy could benefit mood. As women progress through MT into postmenopause, hormone levels become more stable and symptoms begin to subside, with improvements in PA and reduced NA being observed. There are a number of methodological issues that make comparisons...
between the studies of mood and menopause difficult. Much of the research utilizes women from a range of ages, severity of menopausal symptoms, and at different stages in MT. There is no consistency in the assessment of mood, with many studies relying on one off measures, or using menopause symptom scales or quality-of-life measures as proxy mood assessments.

The study has several strengths—it is a randomized trial which is regarded as the gold standard when designing interventions and addressed a paucity of research looking at the effects of soy and psychological well-being in menopause. The researchers believe this may be the first study to examine every day mood assessed prospectively over 4 days at baseline and 4 days at postintervention, in postmenopausal women looking at the effect of soy on its stability and variability. We used self-report and well-established clinical hormone assessment to determine menopausal status. The use of well-established and validated repeated measures of mood is also a strong support for the study and has been validated in previous dietary intervention trials on healthy older adults.

The study has limitations that need to be considered. Although the researchers adhered to very strict inclusion and exclusion criteria and stringent screening methods, this sample was healthy with no major physical or mental health problems, and may not be representative of all postmenopausal women. As a consequence, those from lower socio-economic groups may have been excluded; this may be supported by over half of the sample completing tertiary level education. The sample size is also small, but is adequately powered to look at changes in mood after a dietary intervention. Future studies need to be carried out on women nearer to MT and on a more representative sample before any firm conclusions can be drawn. We have not considered other lifestyle factors and stresses that have the potential to impact mood and quality of life in menopause. Also, personality variables have been found to be related to mood and were not assessed in the present study. The duration of the intervention may not have been long enough to see a change in mood. Also, the present study did not have a placebo condition which may have impacted our findings as all the groups received some isoflavones, and a placebo was not available to the researchers. The low dose was selected as it had not been found previously to have an impact on menopausal symptoms or well-being, and was well below the dose recommended for use in menopause symptom management. Another factor that was not considered in this study, but has the potential to impact on our findings, is the possibility of individual differences in the ability to metabolize isoflavones, for example, approximately one-third of the population produce equol—a metabolite of soy derived from daidzein that alleviates vasomotor symptoms. This may have contributed to some of the conflicting findings in studies looking at dietary soy intervention on quality of life. Future studies need to consider this in relation to the impact of soy on psychological variables such as mood.

CONCLUSIONS

A commercially available soy drink, containing 10, 35, and 60 mg/d of isoflavones, and consumed for 12 weeks in a sample of postmenopausal women, did not produce an effect on mood or menopausal symptoms. Results from research examining MT, peri to postmenopause, with increased fluctuations in hormones and symptoms, may reflect a window of vulnerability in some women and identify a key time for soy intervention. Future studies need to consider this key MT phase and the differences in the effect of soy supplementation for equol and non-equol producers, on symptoms and psychological well-being.

Acknowledgments: The authors would like to thank Callan Dickey, Hannah Anglin, Emma Crawford, Rachael Ervine, and Shannon Kennedy for their assistance in recruitment and data collection, and all participants involved in the study.

REFERENCES

5. Freeman EW. Associations of depression with the transition to menopause. Menopause 2010;17:823-827.

SIMPSON ET AL
Dietary Soy and Mood in Postmenopause

